= Year 12 = Algebra of functions = Worksheet 4

1. Find a, b, c and d such that
$P(x)=12 x^{3}-4 x^{2}-17 x-6=a(x+b)(x+c)(x+d)$.
2. Find the equation of the relation formed after the relation $(x+2)^{2}+(y-4)^{2}=4$ undergoes the following transformations in the order as shown. Reflection in the y-axis, 4 units down, 2 units left, vertical dilation by factor $\frac{1}{2}$, horizontal dilation by factor $\frac{1}{2}$.
3. Refer to Q3. Now carry out the transformations in reverse order. Find the equation of the relation formed.

$$
P\left(x-\frac{1}{2}\right)=a(x+b)(x+c)(x+d)
$$

orer.

2. Refer to $P(x)$ in Q1. Find a, b, c and d such that
3. Find the coordinates of the intersection of $y=1+\sqrt{x+1} \quad$ 6. The two functions in Q5 undergo the same transformations and $y=2 \sqrt{x}$.
as in Q3. Find the coordinates of the intersection of the transformed functions.
4. If $x+\frac{1}{x}=2$, find the value of (i) $x^{2}+\frac{1}{x^{2}}$, (ii) $\sqrt{x}+\frac{1}{\sqrt{x}}$.
5. Given $\log _{y} x-\log _{x} y=\frac{8}{3}$, find the positive value of $\frac{\log _{e} x}{\log _{e} y}$.
6. Use the result in Q8 to solve $\log _{y} x-\log _{x} y=\frac{8}{3}$ and $x-16 y=0$ simultaneously.
7. Given $3 f(x)+f\left(\frac{1}{x}\right)=\frac{2}{x}$, show that $f(-x)=-f(x)$.

Numerical, algebraic and worded answers. 2. $a=12, b=-2, c=\frac{1}{6}, d=0$ or any permutation of b, c and $d .5 .\left(\frac{16}{9}, \frac{8}{3}\right)$
6. $\left(-\frac{17}{9},-\frac{2}{3}\right) \quad$ 1. $a=12, b=-\frac{3}{2}, c=\frac{2}{3}, d=\frac{1}{2}$ or any permutation of b, c and $d .3 \cdot x^{2}+y^{2}=1 . \quad 9 . x=64, y=4$.

7(i) 2 (ii) 2. $4 .(x+3)^{2}+(y+2)^{2}=1$.

