

= Year 12 = Algebra of functions = Worksheet 4	
1. Find a, b, c and d such that	2. Refer to $P(x)$ in Q1. Find <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> such that
$P(x) = 12x^{3} - 4x^{2} - 17x - 6 = a(x+b)(x+c)(x+d).$	$P\left(x-\frac{1}{2}\right) = a(x+b)(x+c)(x+d).$
3. Find the equation of the relation formed after the relation $(x + 2)^2 + (y - 4)^2 = 4$ undergoes the following transformations in the order as shown. Reflection in the y-axis, 4 units down, 2 units left, vertical dilation by factor $\frac{1}{2}$, horizontal dilation by factor $\frac{1}{2}$.	4. Refer to Q3. Now carry out the transformations in reverse order. Find the equation of the relation formed.
5. Find the coordinates of the intersection of $y = 1 + \sqrt{x+1}$ and $y = 2\sqrt{x}$.	6. The two functions in Q5 undergo the same transformations as in Q3. Find the coordinates of the intersection of the transformed functions.
7. If $x + \frac{1}{x} = 2$, find the value of (i) $x^2 + \frac{1}{x^2}$, (ii) $\sqrt{x} + \frac{1}{\sqrt{x}}$.	8. Given $\log_y x - \log_x y = \frac{8}{3}$, find the positive value of $\frac{\log_e x}{\log_e y}$.
9. Use the result in Q8 to solve $\log_y x - \log_x y = \frac{8}{3}$ and $x - 16y = 0$ simultaneously.	10. Given $3f(x) + f\left(\frac{1}{x}\right) = \frac{2}{x}$, show that $f(-x) = -f(x)$.
Numerical, algebraic and worded answers. 2. $a = 12$, $b = -2$, $c = \frac{1}{6}$, $d = 0$ or any permutation of b , c and d . 5. $\left(\frac{16}{9}, \frac{8}{3}\right)$ 8. 3	
6. $\left(-\frac{17}{9}, -\frac{2}{3}\right)$ 1. $a = 12, b = -\frac{3}{2}, c = \frac{2}{3}, d = \frac{1}{2}$ or any permutation of b, c and d . $3. x^2 + y^2 = 1$. $9. x = 64, y = 4$.	
7(i) 2 (ii) 2. 4. $(x+3)^2 + (y+2)^2 = 1$.	