1. Find the exact x-coordinates of the stationary point(s) of $f(x)=0.25(x-3)^{3} e^{x-3}$.
2. Refer to the function in Q1. Determine the nature (local minimum, local maximum or point of inflection) of each stationary point.
3. Refer to the function in Q1. Find the equations of (i) the tangent and (ii) normal at $x=4$.
4. Refer to the function in Q1. Find the exact rate of change of $f(x)$ with respect to x at $x=4$.
5. Find the exact coordinates of the stationary point(s) of the
graph of $y=\sin \left(\frac{\pi \sqrt{4-x^{2}}}{2}\right)$.
6. Refer to the equation in Q5. Find the exact rate of change of y with respect to x at $x=\frac{4 \sqrt{2}}{3}$.
7. Find the exact coordinates of the stationary point(s) of $f(x)=\sin \frac{\pi x}{12}+\cos \frac{\pi x}{12}$, where $-6 \leq x \leq 6$.
8. Refer to the equation in Q5. Find the equations of (i) the tangent and (ii) normal at $x=\frac{4 \sqrt{2}}{3}$.
9. Refer to the function in Q9. Determine the nature of each stationary point.
10. Refer to the function in Q9. Find the equations of (i) the tangent and (ii) normal at $x=0$.

Numerical, algebraic and worded answers.

1. 0,3
2. Local min; infl. point
3. e
4. $y=e(x-15 / 4)$
$y=(-1 / e)\left(x-4-e^{2} / 4\right)$
5. $(0,0) ;(-\sqrt{ } 3,1) ;(\sqrt{ } 3,1)$
6. Local max; local min;
local max
7. $-\pi / \sqrt{ } 2$
8. $y=(-\pi / \sqrt{ } 2) x+4 \pi / 3+\sqrt{ } 3 / 2$
$y=(\sqrt{ } 2 / \pi) x-8 /(3 \pi)+\sqrt{ } 3 / 2$
9. $(3, \sqrt{ } 2)$
10. $\operatorname{Local} \max$
11. $y=(\pi / 12) x+1$
$y=(-12 / \pi) x+1$
