

= Year 12	= Calculus	= Worksheet 4	
1. Find the exact x-co $f(x) = 0.25(x-3)^3 e^{x}$	ordinates of the statio	onary point(s) of	2. Refer to the function in Q1. Determine the nature (local minimum, local maximum or point of inflection) of each stationary point.
3. Refer to the function $f(x)$ with respect to $f(x)$	on in Q1. Find the example x at $x = 4$.	act rate of change of	4. Refer to the function in Q1. Find the equations of (i) the tangent and (ii) normal at $x = 4$.
5. Find the exact coor graph of $y = \sin\left(\frac{\pi\sqrt{2}}{2}\right)$	$\frac{1}{4-x^2}}{2}$.	ary point(s) of the	6. Refer to the equation in Q5. Determine the nature of each stationary point.
7. Refer to the equation <i>y</i> with respect to <i>x</i> at	on in Q5. Find the ex $x = \frac{4\sqrt{2}}{3}.$	act rate of change of	8. Refer to the equation in Q5. Find the equations of (i) the tangent and (ii) normal at $x = \frac{4\sqrt{2}}{3}$.
9. Find the exact coor $f(x) = \sin \frac{\pi x}{12} + \cos \frac{\pi x}{12}$	dinates of the station $\frac{x}{2}$, where $-6 \le x \le 6$	ary point(s) of	10. Refer to the function in Q9. Determine the nature of each stationary point.
11. Refer to the funct tangent and (ii) norm	ion in Q9. Find the each at $x = 0$.	quations of (i) the	Numerical and more than the set of the set