1. The position x (in metres) of a particle moving in a straight line is given by $x=t^{2}-8 t+18$ at time t (in seconds). Find the (i) average velocity, i.e. average rate of change of x with respect to t over the interval $[4,5]$ and (ii) instantaneous velocity, i.e. instantaneous rate of change of x with respect to t, at $t=5$.
2. The graph shows the temperature T (in ${ }^{\circ} \mathrm{C}$) of boiling water decreases when the burner is turned off at $t=0$. Estimate
(i) the average rate of change in temperature in the first 30 minutes and (ii) the rate of change in temperature at $t=30 \mathrm{~min}$.

3. A 4-metre ladder leans against a vertical wall. If the bottom of the ladder slides away from the wall at $0.3 \mathrm{~ms}^{-1}$, find the speed of the top of the ladder sliding down the wall when the bottom of the ladder is 2 m from the wall. the rate at which the water is draining after 30 min .
4. Refer to the ladder in Q4. The sliding ladder makes an angle θ with the vertical wall at time t. Find the rate of increase of θ (in ${ }^{\circ} \mathrm{S}^{-1}$) when the bottom of the ladder is 2 m from the wall.
5. Refer to the balloon in Q6. How fast is the surface area A (in cm^{2}) increasing when $r=20$?
6. A spherical balloon is inflated at $80 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. How fast is the radius r (in cm) increasing when $r=20$?
7. Two cars move away from the intersection of two perpendicular straight roads. Car A travels at $60 \mathrm{kmh}^{-1}$ and car B at $80 \mathrm{kmh}^{-1}$. If both cars are at the intersection initially, at what rate are they moving apart after 6 min ?
8. Refer to the two cars in Q8. If both cars are at the intersection initially, at what rate are they moving apart when they are 2 km from each other?
9. The volume of a cube increases at $0.5 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. How fast does the surface area increase when the length of its edge is 20 cm ?

Numerical, algebraic and worded answers.

3. $\begin{aligned} & \text { (ii) }-0.9{ }^{\circ} \mathrm{Cmin} \\ & 833.3 \mathrm{Lmin}^{-1}\end{aligned}$ 3. $833.3 \mathrm{Lmin}^{-1}$ 4. $0.1732 \mathrm{o}^{\mathrm{o}} \mathrm{s}^{-1}$
5. $0.016 \mathrm{cms}^{-1}$ 6. $0.016 \mathrm{cms}^{-1}$
7. $8 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ 8. $100 \mathrm{kmh}^{-1}$

