

= Year 12	= Calculus	= Worksheet 5	
 The position <i>x</i> (in the line is given by <i>x</i> = <i>t</i> (i) average velocity, if respect to <i>t</i> over the invelocity, i.e. instantate at <i>t</i> = 5. The volume <i>V</i> (in the line of the rate at which the second second	metres) of a particle m ² - 8t + 18 at time t (in i.e. average rate of chan nterval [4,5] and (ii) in neous rate of change o litres) of water remaining s is given by $V(t) = 50$ water is draining after	oving in a straight a seconds). Find the nge of x with istantaneous f x with respect to t, ang in a tank after $000 \left(1 - \frac{t}{60}\right)^2$. Find 30 min.	2. The graph shows the temperature <i>T</i> (in °C) of boiling water decreases when the burner is turned off at $t = 0$. Estimate (i) the average rate of change in temperature in the first 30 minutes and (ii) the rate of change in temperature at $t = 30$ min. 100
5. Refer to the ladder θ with the vertical wa (in °s ⁻¹) when the bot	in Q4. The sliding lad all at time <i>t</i> . Find the ra tom of the ladder is 2 t	der makes an angle ate of increase of θ m from the wall.	6. A spherical balloon is inflated at 80 cm ³ s ⁻¹ . How fast is the radius <i>r</i> (in cm) increasing when $r = 20$?
7. Refer to the balloo cm ²) increasing when	n in Q6. How fast is the $r = 20$?	ne surface area A (in	8. Two cars move away from the intersection of two perpendicular straight roads. Car A travels at 60 kmh ⁻¹ and car B at 80 kmh ⁻¹ . If both cars are at the intersection initially, at what rate are they moving apart after 6 min?
9. Refer to the two ca moving apart after 6 and car A is 3 km fro	urs in Q8. At what rate min if initially car B is m the intersection?	are the two cars at the intersection	10. Refer to the two cars in Q8. If both cars are at the intersection initially, at what rate are they moving apart when they are 2 km from each other?
11. The volume of a of the surface area incre	cube increases at 0.5 c ase when the length of	m ³ s ⁻¹ . How fast does f its edge is 20 cm?	Numerical' algebraic and moded answers: 1. (i) 9 ms ⁻¹ (ii) 2 ms ⁻¹ 2. (i) -2.5 °Cmin ⁻¹ (ii) -0.9 °Cmin ⁻¹ 3. 833.3 Lmin ⁻¹ 4. 0.1732 ms ⁻¹ 5. 4.96 °s ⁻¹ 6. 0.016 cms ⁻¹ 9. 98 kmh ⁻¹ 10. 100 kmh ⁻¹ 11. 0.1 cm ² s ⁻¹ 11. 0.1 cm ² s ⁻¹