1. Water flows out of a tank at a rate of $r(t)=2(t+1)(t-5)^{2}$ litres per minute at time $t \geq 0(\mathrm{~min})$. Find the time when the flow is the quickest.
2. Find the area of the largest square that can fit inside the following triangle.

3. Find the point on the line $2 x+y=10$ that is closest to the point $(6,3)$.
4. Find the area of the largest rectangle that can fit inside the following triangle.

5. Find the radius of a 1-litre cylindrical can, which will minimise the cost of the metal to make it.
6. A right circular cylinder is placed inside a sphere of radius 5 cm . Find the largest possible surface area of the cylinder.
7. At what production level will the average cost per television be lowest if the cost (\$) of producing x televisions each week is $C(x)=260+0.2 x+0.001 x^{2} ?$
8. The volume (kL) of water in a pond at day t is given by
$V(t)=\frac{2 \log _{e}\left(\frac{t}{2}\right)}{t}$, where $t \geq 1$. Find the maximum volume of water in the pond.
9. In terms of p and q, where $p, q>0$, find the area of the smallest right-angle triangle with the point (p, q) lying on its hypotenuse.

10. A right circular cylinder is placed inside a sphere of radius 5 cm . Find the largest possible volume of the cylinder.
11. Find the area of the largest rectangle that has each of its sides touching a vertex of the given rectangle (4 cm by 3 cm).

Numerical, algebraic and worded answers.

1. 1 min
2. 3 square units
3. $144 / 49$ square units
4. $(500 / \pi)^{1 / 3} \mathrm{~cm}$
5. $(4,2)$
6. $500(\sqrt{ } 3) \pi / 9 \mathrm{~cm}^{3}$
7. $25(1+\sqrt{5}) \pi \mathrm{cm}^{2}$
8. 510
9. $1 / e \mathrm{~kL}$
10. $49 / 2 \mathrm{~cm}^{2}$
11. $2 p q$ square units
