1. Use $f(a+h) \approx f(a)+h f^{\prime}(a)$ to estimate $f(1.01)$ given $f(x)=x^{4}-5 x^{3}$.
2. Use $f(a+h) \approx f(a)+h f^{\prime}(a)$ to estimate $f(24.5)$ and $f(25.5)$ given $f(x)=\sqrt{x}$.
3. Use $f(a+h) \approx f(a)+h f^{\prime}(a)$ to estimate $f(2.745)$, given $f(x)=\log _{e} x$ and $e \approx 2.718$.
4. Given $x=3.0$ is an approximate solution to the equation $x^{3}-3 x^{2}+x-2=0$, use $f(a+h) \approx f(a)+h f^{\prime}(a)$ to find a better approximation of the solution.
5. Given $y=e^{x}$, use $\Delta y \approx \frac{d y}{d x} \Delta x$ to find the $\%$ change in y when x increases by 0.01 .
6. Use 'left' rectangles of unit width to estimate the area under the graph of $y=e^{x}$ between $x=0$ and $x=3$.
7. Use 'right' rectangles of unit width to estimate the area under the graph of $y=e^{x}$ between $x=0$ and $x=3$. Find the average of the left and right-rectangles estimates.
8. Use 'left' rectangles of $\frac{\pi}{6}$ in width to estimate the area under the graph of $y=\sin x$ between $x=0$ and $x=\frac{\pi}{2}$.
9. Use 'right' rectangles of 10 units in width to estimate the area bounded by the curve $y=\frac{1}{10} \log _{10} x$, the x-axis and the line $x=20$.

Numerical, algebraic and worded answers.

