

= Year 12	= Calculus	= Worksheet 7	
1. Use $f(a+h) \approx \int_{a}^{b} f(x) = x^4 - 5x^3$.	f(a) + hf'(a) to estimate	f(1.01) given	2. Use $f(a+h) \approx f(a) + hf'(a)$ to estimate $f(24.5)$ and $f(25.5)$ given $f(x) = \sqrt{x}$.
3. Use $f(a+h) \approx \int_{a}^{b} f(x) = \log_{e} x$ and	f(a) + hf'(a) to estimate $e \approx 2.718$.	<i>f</i> (2.745), given	4. Given $x = 3.0$ is an approximate solution to the equation $x^3 - 3x^2 + x - 2 = 0$, use $f(a+h) \approx f(a) + hf'(a)$ to find a better approximation of the solution.
5. Given $y = \sqrt[3]{x}$,	use $\Delta y \approx \frac{dy}{dx} \Delta x$ to find t	he % change in y	6. Given $y = e^x$, use $\Delta y \approx \frac{dy}{dx} \Delta x$ to find the % change in y
when <i>x</i> changes fro			dx when x increases by 0.01.
	gles of unit width to estin ^x between $x = 0$ and $x =$		8. Use 'right' rectangles of unit width to estimate the area under the graph of $y = e^x$ between $x = 0$ and $x = 3$. Find the average of the left and right-rectangles estimates.
9. Use 'left' rectan	gles of $\frac{\pi}{6}$ in width to est	timate the area	10. Use 'right' rectangles of $\frac{\pi}{6}$ in width to estimate the area
	$y = \sin x$ between $x = 0$	π	under the graph of $y = \sin x$ between $x = 0$ and $x = \frac{\pi}{2}$. Find the average of the left and right-rectangles estimates.
-	angles of 10 units in wid		Numerical, algebraic and worded answers.
area bounded by the line $x = 20$.	the curve $y = \frac{1}{10} \log_{10} x$, t	he <i>x</i> -axis and the	1. -4.11 2. $4.95, 5.05$ 3. 1.010 4. 2.9 5. 0.27% 6. 1% 6. 1% 7. $1+e+e^{3}$ sq units ($1+2e+2e^{2}+e^{3}/2$ sq units ($1+2e+2e^{2}+e^{3}/2$ sq units ($1+\sqrt{3})\pi/12$ sq units ($2+\sqrt{3})\pi/12$ sq units 11. 2.3 sq units