

= Year 12	= Calculus II	= Worksheet 10	
1. The rate of char proportional to t - Set up a differenti t = 9.	nge of V with respect to t -1. Initially $V = 100$ and al equation for V, solve it	is inversely V = 80 when $t = 5$. to find V when	2. A population grows at a rate proportional to its size. If the initial population is 10000 and it doubles every unit of time. Find the population after (i) 2 (ii) 3 (iii) 2.73 units of time.
3. The rate of deca proportional to the time taken for a ha is 3.2 hours. Find the sample after <i>a</i>	ay of a radioactive substant e remaining mass m of the alf of the substance remain the proportion of the subst <i>nother</i> two hours.	nce is directly e substance. The ning in the sample stance remaining in	4. The gradient of the tangent to a curve $y = f(x)$ is partly proportional to x and partly to $\frac{1}{\sqrt{x}}$. The curve passes through the origin, (1,2) and (4,11). Find y when $x = 9$.
5. The surface ten rate proportional t the object and the If the temperature Find the drop in to surrounding temp temperature is 80°	nperature T of an object cl o the difference between temperature T_o of the sum of the object drops by 10 emperature in the next 5 n erature is constant 20°C a PC.	hanges in time <i>t</i> at a the temperature of rounding medium. °C in 5 minutes. hinutes, given the nd the initial	6. The acceleration <i>a</i> of a particle moving in a straight line is directly proportional to the square of its speed <i>v</i> . It has an initial speed of 80 ms ⁻¹ . Five seconds later the speed is 56 ms ⁻¹ . Find the time when the speed is 10 ms ⁻¹ .
7. A thermometer One minute later i 30°C. Find the ter	is taken from a house at 2 t reads 27°C, another min nperature outside the hous	21°C to the outside. nute later it reads se.	8. A person borrows \$10000 at 10.95% interest compounded daily. Set up a differential equation for the amount owing at time <i>t</i> days. Find the amount \$ <i>A</i> owing a year later.
9. A tank contains of 0.3 kg of salt poper minute and the rate. Find the amo	2000 L of salt solution w er litre. Pure water runs in e well mixed solution runs ount of salt in the tank afte	with a concentration to the tank at 50 L is out at the same for 5 minutes.	10. Refer to Q9. Instead of pure water, a solution with a concentration of 0.2 kg of salt per litre runs into the tank. Find the amount of salt in the tank after 5 minutes. Find the concentration of salt in the tank eventually.
11. Refer to Q9. I well mixed solution method (step size of salt in the tank	nstead of running out at th on runs out at 40 L per mi of 1 minute) to find the aj after 5 minutes.	ne same rate, the nute. Use Euler's pproximate amount	Numerical and the state of the