1. The rate of change of V with respect to t is inversely proportional to $t+1$. Initially $V=100$ and $V=80$ when $t=5$. Set up a differential equation for V, solve it to find V when $t=9$.
2. A population grows at a rate proportional to its size. If the initial population is 10000 and it doubles every unit of time. Find the population after (i) 2 (ii) 3 (iii) 2.73 units of time.
3. The rate of decay of a radioactive substance is directly proportional to the remaining mass m of the substance. The time taken for a half of the substance remaining in the sample is 3.2 hours. Find the proportion of the substance remaining in the sample after another two hours.
4. The surface temperature T of an object changes in time t at a rate proportional to the difference between the temperature of the object and the temperature T_{o} of the surrounding medium. If the temperature of the object drops by $10^{\circ} \mathrm{C}$ in 5 minutes. Find the drop in temperature in the next 5 minutes, given the surrounding temperature is constant $20^{\circ} \mathrm{C}$ and the initial temperature is $80^{\circ} \mathrm{C}$.
5. A thermometer is taken from a house at $21^{\circ} \mathrm{C}$ to the outside. One minute later it reads $27^{\circ} \mathrm{C}$, another minute later it reads $30^{\circ} \mathrm{C}$. Find the temperature outside the house.
6. A person borrows $\$ 10000$ at 10.95% interest compounded daily. Set up a differential equation for the amount owing at time t days. Find the amount $\$ A$ owing a year later.
7. A tank contains 2000 L of salt solution with a concentration of 0.3 kg of salt per litre. Pure water runs into the tank at 50 L per minute and the well mixed solution runs out at the same rate. Find the amount of salt in the tank after 5 minutes.
8. Refer to Q9. Instead of pure water, a solution with a concentration of 0.2 kg of salt per litre runs into the tank. Find the amount of salt in the tank after 5 minutes. Find the concentration of salt in the tank eventually.

11. Refer to Q9. Instead of running out at the same rate, the

 well mixed solution runs out at 40 L per minute. Use Euler's method (step size of 1 minute) to find the approximate amount of salt in the tank after 5 minutes.Numerical, algebraic and worded answers.

