

= Year 12	= Calculus II	= Worksheet 2	
	and $q = 4\sin^{-1}(p-1)+1$, f	ind $\frac{dq}{dr}$ when	2. Given $\frac{dr}{d\theta} = -2\theta$ and $\frac{dR}{d\theta} = \theta$, find $\frac{dR}{dr}$ when $\theta = \frac{\pi}{2}$.
$q = 1.$ 3. If $\frac{dy}{dx} = \frac{4}{4 + x^2}$	and $\frac{dy}{dt} = 2$, find $\frac{dt}{dx}$ in to	erms of <i>x</i> .	4. Evaluate $\frac{dx}{dt}$ when $y = \log_e x-1 $, $\frac{dy}{dt} = -1$ and $x = 0$
when the depth is constant rate of $\frac{\pi}{2}$	water in a container is give <i>h</i> m. Water is drained fron - m ³ s ⁻¹ . Find the rate of de 1	n the container at a	6. The profile of a skate ramp is given by $y = 3\cos^{-1}\left(\frac{x}{5}-1\right)$. Find $\frac{dx}{dt}$ when $\frac{dy}{dt} = -2$ at $x = 2$. (Length in m, time in s)
of water when <i>h</i> =	$=\overline{\sqrt{2}}$.		
7. Given $\frac{(x-1)^2}{5}$.	$-y^2 = 1$, find $\frac{dy}{dx}$ at $x = 6$		8. Refer to Q7. Find $\frac{dy}{dt}$ at $x = 6$ when $\frac{dx}{dt} = -2$.
9. Given $3(x+1)y$	$x^2 = x + y + 1$, find $\frac{dx}{dy}$ in t	erms of <i>x</i> and <i>y</i> .	10. Use calculus to find the coordinates of the points where the graph of $4x^2 + y^2 = 4(2x - y - 1)$ has a vertical or horizontal tangent line.
	Find the exact coordinates $f_{1} 4x^{2} + x^{2} = 4(2x - x - 1)$	-	Numerical, algebraic and worded answers.
where the graph o	$f 4x^2 + y^2 = 4(2x - y - 1)$	has a gradient of 1.	1. 12 2. −1/2 3. 2/(4+x ²) 4. 1 5. 1 ms ⁻¹ 6. 8/3 ms ⁻¹ 7. ±1/2 8. ±1 9. (6xy+6y−1)/(1−3y ²) 10. Hori: (1,0), (1,−4) Ver: (0,−2), (2,−2) 11. (1+1/V5, −2−4/V5) (1−1/V5, −2+4/V5)
			•