= Year 12

= Complex numbers

= Worksheet 4

1. Find $\sqrt[3]{1+i}$. Write your answers in polar form.

2. Change your answers in Q1 to exact x + yi form.

- 3. Find $\sqrt[8]{-1}$. Write your answers in polar form.
- 4. Change $cis \frac{\pi}{8}$ to exact x + yi form.

- 5. Use the conjugate root theorem and the fundamental theorem of algebra to explain why $az^3 + bz^2 + cz + d$ has at least one real root for $a, b, c, d \in R$.
- 6. Show that z-1+i is a factor of z^3+2z^2-6z+8 . Find the

7. Find the roots of $z^3 + z^2 + z$.

8. Solve $2z^3 - 3z^2 + 4z - 6 = 0$.

- 9. Given z-1-i is a factor of $P(z)=z^3+pz+q$, find p and $q \in R$. Hence solve P(z) = 0.
- 10. Consider z = a + ib, find a and b such that $z^2 = i$. Hence solve $z^4 = -1$.

Numerical, algebraic and worded answers.

- $\begin{array}{l} 1. \ \ 2^{1/6}cis(\pi/12), \ 2^{1/6}cis(3\pi/4), \ 2^{1/6}cis(-7\pi/12) \\ 2. \ \ 2^{-4/3}(1+\sqrt{3}) 2^{-4/3}(1-\sqrt{3})i, \ -2^{-1/3} + i2^{-1/3}, \ 2^{-4/3}(1-\sqrt{3}) 2^{-4/3}(1+\sqrt{3})i \end{array}$
- 3. $cis(-7\pi/8)$, $cis(-5\pi/8)$, $cis(-3\pi/8)$, $cis(-\pi/8)$, $cis(\pi/8)$, $cis(3\pi/8)$, $cis(5\pi/8)$, $cis(7\pi/8)$
- 4. $\sqrt{(2+\sqrt{2})/2} + i/\sqrt{(4+2\sqrt{2})}$
- 5. Cubic polynomial has 3 roots (FTofA). For real coefficients, either all roots are real, or a pair of complex conjugate roots + 1 real root (CRT).
- 6. z-1-i, z+4
- 7. $0, -1/2 i\sqrt{3}/2, -1/2 + i\sqrt{3}/2$
- 8. $z = 3/2, i\sqrt{2}, -i\sqrt{2}$
- 9. p = -2, q = 4, z = -2, 1+i, 1-i
- 10. $a = \pm 1/\sqrt{2}$ and $b = \pm 1/\sqrt{2}$, $z = 1/\sqrt{2} + 1/\sqrt{2}i$, $-1/\sqrt{2} 1/\sqrt{2}i$, $1/\sqrt{2} 1/\sqrt{2}i$, $-1/\sqrt{2} + 1/\sqrt{2}i$