
3. The following solid is a right pyramid with a square base and height of $\sqrt{2} \mathrm{~cm}$. Find θ°.

5. The area enclosed by the triangle is $35 \mathrm{~cm}^{2}$. Find the shortest distance between the two parallel lines.

7. Find the total surface area (round to nearest cm^{2}) of the solid. $\mathrm{AB}=3 \mathrm{~cm}$ and it is perpendicular to the rectangular base.
9. Find the total surface area (round to nearest cm^{2}) of the solid. $\mathrm{PA}=\mathrm{PB}=\mathrm{PC}=2 \mathrm{~cm}$ and they are perpendicular to each other.

11. Find the (i) total surface area and (ii) volume of the hemispherical solid in terms of π.

4. Find length $A B$ in cm .

6. Find the length of the hypotenuse of triangle \boldsymbol{D}.

1 cm

8. Find the volume (in cm^{3}) of the solid shown in Q7.

Numerical, algebraic and worded answers.

