1. Point B is NE of O . Point A is $\mathrm{N} 60^{\circ} \mathrm{W}$ of O . The angle of elevation of B from O is 55°. The angle of depression of O from A is 60°. Find (a) the angle of elevation of A from O, and (b) the angle of depression of O from B .
2. Refer to Q1. Find the straight line distance between A and B.

3. Refer to Q1. Find the horizontal distance of (a) A from O, and (b) B from O.
4. Refer to Q1. Find the measure of $\angle A O B$.
5. Refer to Q1. Find the straight line distance from (a) O to A, and (b) O to B .
6. Refer to the contour map in Q1. Calculate the land area (in m^{2}) enclosed by $\triangle A O B$.
7. Two solid spheres (radius 1 cm) are in contact when they are placed inside a rectangular box such that each sphere touches exactly 5 faces of the box. Find the volume (in cm^{3}) of the box.
8. Refer to Q8. Calculate the volume of air inside the box when the spheres are in position.
9. Two solid spheres (radius 1 cm) are in contact when they are placed inside a rectangular box such that each sphere touches exactly 4 faces of the box. Find the volume (in cm^{3}) of the box.
10. Refer to Q8. If the radius of the 2 identical solid spheres inside the box is greater than 1 cm , calculate the value of the ratio, volume of air inside the box : total volume of the spheres.
11. Two solid spheres (radius 1 cm) are in contact when they are placed inside a rectangular box such that each sphere touches exactly $\mathbf{3}$ faces of the box. Find the volume (in cm^{3}) of the box.

Numerical, algebraic and worded answers.

