1. Find the value of $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$, where α, β and γ are the angles that a vector makes with the x, y and z axes respectively.
2. Find a vector perpendicular to $3 \boldsymbol{i}-2 \boldsymbol{j}+4 \boldsymbol{k}$.
3. Use a vector method to find the shortest distance from the point $(3,-2,5)$ to the line that passes through $(3,2,1)$ and $(1,0,2)$.
4. P and Q are points with position vectors \boldsymbol{p} and \boldsymbol{q} respectively. If $|\boldsymbol{p}|=4,|\boldsymbol{q}|=7$ and $\boldsymbol{p} \cdot \boldsymbol{q}=20$, find $P Q$.
5. Given points $A(3,-4), B(7,0)$ and M between A and B, find the coordinates of M such that $\overrightarrow{A M}=3 \overrightarrow{M B}$.
6. Find a vector perpendicular to $\boldsymbol{i}+\boldsymbol{j}$ and $\boldsymbol{j}-\boldsymbol{k}$.
find the coordinates of M such that $\overrightarrow{A M}=3 \overrightarrow{B M}$.
7. Find a vector \boldsymbol{p} such that $\boldsymbol{i}+\boldsymbol{j}, \boldsymbol{j}-\boldsymbol{k}$ and the vector \boldsymbol{p} are linearly dependent.
8. If \boldsymbol{a} and \boldsymbol{b} are linearly independent and \boldsymbol{d} is perpendicular to both \boldsymbol{a} and \boldsymbol{b}, find a vector \boldsymbol{c} in terms of \boldsymbol{a} and \boldsymbol{b} such that \boldsymbol{c} and \boldsymbol{d} are also perpendicular.
9. Show that vectors $2 \boldsymbol{i}-3 \boldsymbol{j}+5 \boldsymbol{k}, \boldsymbol{i}-\boldsymbol{j}+2 \boldsymbol{k}, \boldsymbol{i}+2 \boldsymbol{j}+\boldsymbol{k}$ and $i+7 \boldsymbol{j}$ are linearly dependent.

Numerical, algebraic and worded answers.

