	• . • • • · • · • • • • • • • • • • • •	
= Year 12 = Vectors	= Worksheet 5	
1. Find $\frac{d}{dx} [x^2 \mathbf{i} - \sqrt{x} \mathbf{j}].$		2. Given $\mathbf{F} = x \mathbf{i} - y^2 \mathbf{j}$, where <i>x</i> and <i>y</i> are functions of <i>t</i> , find $d\mathbf{F}/dt$.
3. Find $\int [x^2 \mathbf{i} - \sqrt{x} \mathbf{j}] dx$.		4. The position of a particle is given by $\mathbf{r}(t) = 3\cos(2t) \mathbf{i} - 4\sin(2t) \mathbf{j}$ at time $t \ge 0$. Find the magnitude and direction of its velocity at $t = \frac{3\pi}{8}$.
5. Refer to the particle in Q4. Find its acc that it is towards the centre of the path.	eleration and show	6. The position of a particle is given by $\mathbf{r}(t) = \tan t \ \mathbf{i} + \sec^2 t \ \mathbf{j}$, where $0 \le t < \frac{\pi}{2}$. Find the magnitude and direction of its velocity at $t = \frac{\pi}{4}$.
7. The position of a particle is given by $\mathbf{r}(t) = a\cos(nt)\mathbf{i} + a\sin(nt)\mathbf{j} + bt\mathbf{k}$, when Describe its motion.	a, b > 0.	8. The acceleration of a particle moving in a plane is given by $\mathbf{a} = -5\mathbf{j}$. Initially it is at $\mathbf{r} = 14\mathbf{i}$, and has a velocity of $7\mathbf{i} - 10\mathbf{j}$. Find the cartesian equation of its path including domain.
9. The position vectors of particle A and $\mathbf{r}_{\rm B} = t \mathbf{i} + \log_{e}(t) \mathbf{j}$ respectively, where when the two particles are closest.	B are $\mathbf{r}_{A} = \frac{t}{5}\mathbf{i} + e^{\frac{t}{5}}\mathbf{j}$ e $t > 0$. Find the time	10. Refer to Q9. Find the closest approach of the two particles.
11. Refer to Q9. Find the closest distance the two particles.	between the paths of	Numerical' algebraic and model and $2\pi i - 1/2\sqrt{x} j$ 2. $dx/dti - 2y dx/dt j$ 3. $x^3/3 i - 2x^{3/2}/3 j + c$ 4. $5\sqrt{2} : -0.6 i + 0.8 j$ 5. $a = -4r$ 6. $2\sqrt{5} : \sqrt{5} / 5 : i + 2\sqrt{5} / 5 j$ 7. Upward circular helix, radius a, period $2\pi n$, ascending speed b 8. $y = -5/98 x^2 + 10$, [14, ∞) 9. $t \approx 1.127$ 10. 1.448 11. $\sqrt{2}$