"

Draline at home tutors negistered husiness nameiture anv: 96297924083

2021
 Specialist
 Mathematics

Year 12
 Application Taski
 (Time allowed: 4 hours plus)

Theme: Jet-ski chase

The rider of a jet-ski sees another jet-ski travelling in a straight line and gives chase.
The task is to explore the path of a jet-ski in pursuit of another.
Assumed knowledge: Position vectors, parametric equations, differentiation, integration, differential equations, length of an arc, kinematics, graphs, CAS

Part I (80-90 min)

Jet-ski A has position vector $\tilde{r}_{A}(t)=x_{A}(t) \tilde{i}+y_{A}(t) \tilde{j}$ at time t.
Jet-ski B has position vector $\widetilde{r}_{B}(t)=y_{B}(t) \tilde{j}$ at time t.
Jet-ski A gives chase to Jet-ski B.
Jet-ski A always heads straight for Jet-ski B.
Jet-ski A travels at the same speed as Jet-ski B.

Let $\tilde{v}=\frac{d \tilde{r}}{d t}=\dot{r}=\dot{x} \tilde{i}+\dot{y} \tilde{j}$.
a. Write an expression for $\left|\tilde{v}_{A}\right|$ in terms of the \tilde{i} and \tilde{j} components of \tilde{v}_{A}.
b. Write an expression for $\left|\tilde{v}_{B}\right|$ in terms of the component of \tilde{v}_{B}.
c. Write an expression for $\left|\widetilde{r}_{B}-\tilde{r}_{A}\right|$ in terms of the \tilde{i} and \tilde{j} components of $\tilde{r}_{B}-\tilde{r}_{A}$.
d. $\quad \tilde{v}_{A}$ makes angle θ with the x-axis. Find θ in terms of the \tilde{i} and \tilde{j} components of \tilde{v}_{A}.
e. $\quad \tilde{r}_{B}-\tilde{r}_{A}$ makes the same angle θ with the x-axis.

Find θ in terms of the \tilde{i} and \tilde{j} components of $\tilde{r}_{B}-\tilde{r}_{A}$.
f. Show that $\frac{\dot{y}}{\dot{x}}=\frac{d y}{d x}$.
g. Using some/all results in parts a to f , show that $y_{B}=y_{A}-x_{A} \frac{d y_{A}}{d x_{A}}$.
h. Hence show that $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x \frac{d^{2} y}{d x^{2}}$ for Jet-ski A, i.e. $\sqrt{1+\left(\frac{d y_{A}}{d x_{A}}\right)^{2}}=x_{A} \frac{d^{2} y_{A}}{d x_{A}^{2}}$
i. Show that $\frac{d}{d u} \log _{e}\left(u+\sqrt{1+u^{2}}\right)=\frac{1}{\sqrt{1+u^{2}}}$.

Let $u=\frac{d y}{d x}$.
$\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x \frac{d^{2} y}{d x^{2}}$ can be written as $\sqrt{1+u^{2}}=x \frac{d u}{d x}$.
At point $(1, \beta), u=\frac{d y}{d x}=0$ for Jet-ski A.
j. Without using CAS show that for $\beta=0, \sqrt{1+u^{2}}=x \frac{d u}{d x}$ has solution given by $u+\sqrt{1+u^{2}}=x$.
k. Hence, without using CAS, show that for $\beta=0, y=\frac{x^{2}-1}{4}-\frac{1}{2} \log _{e} x$.

1. Sketch the path of Jet-ski $A, y=\frac{x^{2}-1}{4}-\frac{1}{2} \log _{e} x$ for $\beta=0$.
m. Sketch the paths of Jet-ski A for two other real values of $\beta \in[1,3]$ on the same set of axes in the previous part. Label each path with its value of β.
n. Comment on the effects of changing the value of β on the path of Jet-ski A.

Part II (80-90 min)

If students attempt Part II at a latter time, they should have copies of their Part I to access the given information and their workings.

Continuation of Part I:
$\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x \frac{d^{2} y}{d x^{2}}$ can be written as $\sqrt{1+u^{2}}=x \frac{d u}{d x}$ where $u=\frac{d y}{d x}$.
Now, for Jet-ski $A, u=\frac{d y}{d x}=0$ at point $(\alpha, 0)$.
a. Without using CAS show that for $\alpha=2, \sqrt{1+u^{2}}=x \frac{d u}{d x}$ has solution given by $u+\sqrt{1+u^{2}}=\frac{x}{2}$.
b. Hence, without using CAS, show that for $\alpha=2, y=\frac{x^{2}-4}{8}-\log _{e} \frac{x}{2}$.
c. Show that for $\alpha \in R, y=\frac{x^{2}-\alpha^{2}}{4 \alpha}-\frac{\alpha}{2} \log _{e} \frac{x}{\alpha}$.
d. Sketch the path of Jet-ski A for three different values of $\alpha \in[1,4]$ on the same set of axes. Label each path with its value of α.
e. Comment on the effects of changing the value of α on the path of Jet-ski A.

From partf to part j, consider the path of Jet-ski A, given $\frac{d y}{d x}=0$ at point $(3,0)$.
f. When Jet-ski A travels from $x=7$ to $x=0.5$, Jet-ski B travels from y_{1} to y_{2}. Find the values of y_{1} and y_{2}.
g. Calculate the length of the path of Jet-ski A from $x=7$ to $x=0.5$.
h. Compare and comment on the answer in part g with the value of $y_{2}-y_{1}$.
i. Discuss/explain whether Jet-ski A will catch up with Jet-ski B.
j. Find the shortest distance between Jet-ski A and Jet-ski B if it exists.
k. Let $y=f(x)$ be the path of Jet-ski A and $\frac{d y}{d x}=0$ at point (α, β).

Find $f(x)$ in terms of parameters α and β.

1. Discuss/explain whether your answers to part i and part j are affected by changing the value of α or β.

Part III ($\mathbf{8 0 - 9 0} \mathbf{~ m i n}$)

If students attempt Part III at a latter time, they should have copies of their Part I and Part II to access the given information and their workings.

In Part I and Part II
Jet-ski A has position vector $\tilde{r}_{A}(t)=x_{A}(t) \tilde{i}+y_{A}(t) \tilde{j}$ at time t,
Jet-ski B has position vector $\tilde{r}_{B}(t)=y_{B}(t) \tilde{j}$ at time t,
Jet-ski A always heads straight for Jet-ski B,
Jet-ski A travels at the same speed as Jet-ski B.
In Part III assume that Jet-ski A travels at a higher speed than Jet-ski B,
i.e. speed of $B=n \times$ speed of A where $0<n<1$.
$\therefore n \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x \frac{d^{2} y}{d x^{2}}$ and it can be written as $n \sqrt{1+u^{2}}=x \frac{d u}{d x}$ where $u=\frac{d y}{d x}$.
Now, for Jet-ski A, let $\frac{d y}{d x}=0$ at point $(1,0)$.
a. Without CAS show that $u=\frac{d y}{d x}=\frac{x^{n}}{2}-\frac{1}{2 x^{n}}$.
b. Hence, without CAS, show that $y=\frac{(1-n) x^{1+n}-(1+n) x^{1-n}+2 n}{2\left(1-n^{2}\right)}$.
c. If the speed of Jet-ski A is twice the speed of Jet-ski B, find the point where Jet-ski A catches up with Jet-ski B. Explain/verify your answer.
d. If the speed of Jet-ski A is twice the speed of Jet-ski B, and it starts the chase at $x=10$, find the total distance travelled during the chase.
e. Show that the distance travelled by Jet-ski B is a half of that travelled by Jet-ski A during the chase.
f. Investigate and comment on the effects of changing the value of n on (i) the path of Jet-ski A and (ii) the point where Jet-ski A catches up with Jet-ski B.
Suggestions: Find the equations of the path for three different values of $n \in[0.3,0.9]$.
Sketch and label the path for each of your chosen n values on the same set of axes.
g. Let the speed of $B=\frac{1}{2} \times$ the speed of A,.: the path of Jet-ski $A, y=f(x)$ satisfies the differential equation $\frac{1}{2} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x \frac{d^{2} y}{d x^{2}}$.
Given $\frac{d y}{d x}=0$ at point $(\alpha, 0)$, solve the differential equation in terms of α.
h. Investigate and comment on the effects of changing the value of α on (i) the path of Jet-ski A and (ii) the point where Jet-ski A catches up with Jet-ski B.

Sketch and label the path for each value of α on the same set of axes.

