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Complex Numbers

Many quadratic equations ax” +bx +c¢ =0 cannot be solved
within the set of real numbers R.

_h+Ap? =
By the quadratic formula x = bt 2b dac
a

solutions exist for those with discriminant »* —4ac <0
-+ the square root of a negative number is undefined in R.

, ho real

Example 1 x” +1=0 does not have real solution(s) because

b* —4ac =—4 is a negative value.

Example 2 x°—x+1=0 does not have real solutions

because b*> —4ac=-3 is a negative value.

Suppose we introduce the imaginary number +—1 and label it

as i. By definition, i* = —1.

Now the two equations above can be solved in terms of i.
Forx’+1=0, x> =—1, x=44J—1, x==i .

For x> —x+1=0, use the quadratic formula,

_ DY) -4 16v-3 #4351
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A number in the form x + yi , where x,y € R and i* =—1, is
called a complex number.

We use C to denote the set of complex numbers.
Note that R C.

A real number can be considered as a complex number,

e.g. 5=5+0i, —§:—§+Oi.

We use z to represent a complex number, i.e. z=x+ yi. It

consists of two parts: x is called the real part of z and y the
imaginary part of z. x=Rez, y=Imz.

Example ] z=2-i, Rez=2 andlmz=-1.

Example 2 ZI%—\/EI', Rez:%andlmz:—\/g.
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Equality of two complex numbers

Two complex numbers are equal if they have equal real parts
and equal imaginary parts. The converse is also true,

ie. a+bi=c+di<a=c and b=d.

Example 1 Given (x> —=3)-8i =1+ (2x—x%)i, find x.

Equate the real parts, x* —3 =1, x = +2; equate the imaginary
parts, —8 =2x—x>, x> —2x—-8=0, x=-2 or4.
x = -2 is the only solution that satisfies both equations.

Example 2 Find a, b, given a+b—i=3+(a—-b)i .

Equate the real parts, and the imaginary parts,
a+b=3 and —1=a—b. Solve the equations simultaneously
toobtain a=1and b=2.

Addition and subtraction of complex numbers

Given z, =a+bi and z, =c+di, then
zyxz,=(atc)+(bxd)i.

Example | Given z, =a—-bi, z,=a+b+i, z; =1+(a—-b)i
and z, +z, —z, =0, find the values of a and b.

(a—bi)+(a+b+i)-[1+(a-b)]=0
a+a+b—l—bi+i—(a—b)i:0
Qa+b-1)+(1-a)i=0

S 2a+b—-1=0and 1-a=0
sa=1and b=-1.

Multiplication of complex numbers
Follow the usual method in algebraic expansion.

Let z, =a+bi and z, =c+di, then
2,2, = (a+bi)(c +di) = ac + adi + bci + bdi’
=(ac—bd)+(ad +bc)i .

Example 1 Expand (\/5 —i2 )2 .

(ﬁ —z\/E)Z = (x/g)2 —2(@Xiﬁ)+ (i\/E f
—3-i2V6-2=1-(246)

Example2  Simplify (v5 ~2iJ/5 +2i).

(\/§—2iX\/§+2i)=(\/§)2 —(2if =5+4=9

Complex numbers 1



Conjugate of a complex number

Given z = a + bi, then the conjugate of z, denoted as z , is
z =a—>bi . The product of z and z is a real number, (see last

example 2)i.e. zz = (a +bi)(a—bi)=a’ +b* €R.
Division of complex numbers

This operation is performed by multiplying both the dividend
(numerator) and the divisor (denominator) by the complex
conjugate of the divisor, then simplify.

Z, _ 214,

Zy 27,

Example 1

Simplify f_jl , express answer in x+ yi form.
+ 41

2-3i  (2-3i)1-4i) -10-7i _ 10 7.

1+4i (1+4i)1-4i) 17 17 17

Example 2 Simplify , €Xpress answer in x + yi
1+

2-3i
form with rational denominators.
i _ —i(l+\/5+3i) B —(1+\/5)'
144230 (14423112 431) (1042 430
—(1+x/5}'_ 3 1+42 ;
124242 124242 124242
~ 3h2-242) (+42)12-2v2)
“l2e2v2)i2-22) {2+ 242)12-242)
3(12—2&)_8—1&/_1._3(6—f)_4—5fi

136 136 68 68

Multiplicative inverse of a complex number

e 1 1 .
The multiplicative inverse of z is— , because zx—=1. It is

z 4
denotedbyz™',ie. .z ==
z
Example 1 Find z' inx+ yi form, givenz=2—i.
L1 12+i)  2+i 2 L
z === = = — 4 —
z 2-i (@-i2+) 5 55

Powers of complex numbers

Powers of complex numbers are defined the same way as the
powers of real numbers,

e.g. 2 =zxzxz
2
z7? 2(271)2 z[éj or z72 = (22 )7] :Lz
N
e () o
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Example 1 If z=3-2i, find (2)2 .
) =(B+2i) =5+12i

Example 2 Given z=2—-i, find z~°

= :[?jz :[21-1')2 :((2 1—(?)(;11 i)JZ :(25”)2
B 3;541 :2is+%i

Example 3 Show that ()’ =z® and (z)” =z, given
z=x+1iy.
(2)2 = (x—iy)2 = (x2 —y? )— 2xyi = ixQ —y? i+ 2xyi = 2_2
6 ==
P -y)-20i
B 1[(x2 - y2)+ 2xyi]
- [(xz - yz)—nyiJ[(xz —y2)+ 2xyiJ
(x2 - yz)—i- 2xyi
(x2 —y2)2 +4x%y?
!xz -y? !+ 2xyi
2

(x +y

1
22 [x —y +2xle

]

_[[(xz )’2)+2xle[
J_sz_yz M

(x2 +y2)2

B

The complex plane ( Argand plane)

A complex number can be represented as a point in the
complex plane. The position of the point is indicated by the
real and imaginary parts of the complex number and relative
to the complex number z =0+1i0, the origin of the complex
plane. The horizontal axis through the origin is called the real
axis and the vertical axis is the imaginary axis.

Im#4
Ze 2
-1 0 1 Re
-1 . Z,
eg z=-1+2i, z,=1-i.

Complex numbers



Example 1  Pick any complex number z, then find iz,i’z,i’z

and i*z . Plot them in the complex plane. Give a geometrical
interpretation of multiplying a complex number by i .

Let z=-1+2i,then iz=-2—i, i’z=1-2i, i’z=2+1i and

i‘z=—-142i=z.

Im
. A
z :l4Z
\
\ .
\\ "z
\ -7
\ -7
\| -~
0 » Re
- \
-~
// \
// \
. \
iz \
\
\
i’z

Multiplying a complex number by i rotates the complex
number anticlockwise by 90°. Multiplying a complex number
by —i rotates the complex number clockwise by 90°.

Example 2 Represent z, =1-i, z, =1+2i and
z, =z, +z, in a complex plane. What do you notice?

zy =z +z,=2+i

Im , z,
S
A
// B
\\
/ N
/ //7 Z3
// - )/
-~ 7
- N o
N\ ;. "
of > Re
AN
\I
Z

0, z,, z, and z, are the vertices of a parallelogram.

Example 3 Pick any complex number z, find z and plot
both in a complex plane. Discuss.
Let z=x+yi,then z=x—-yi.

Im
A

v
o)
o

z 1is the reflection of z in the Re-axis.

Complex numbers in polar form

The position of a complex number in the complex plane can
also be described in terms of its ‘distance’ from the origin and
the angle that the line joining the complex number to the
origin makes with the positive Re-axis. It is called polar form.
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Im ,

P
v
=
(¢]

The ‘distance’ is called the modulus of the complex number,
and it is denoted by 7, mod z or |z| .

r= (Rez)2 +(Imz)2 .

The angle is called the argument of the complex number,
denoted by 8 orargz .

If —7 <0< ,the argument is denoted by Arg z.
Arg z is called the principal value of arg z .

€z

0= Argz= tan_l(lmzj, Rez#0.

Notes: 1) Since there are two possible values for @ , it is
necessary to check in which quadrant of the complex plane
that z lies, and the correct value for 8 is chosen accordingly.

2) If Rez=0,then 6 :g or —% depending on whether

Im z is positive or negative.

Interms of rand @ , Rez=rcos@ and Imz=rsiné, hence
z in polar form is
z= (r cos :9)+ i(r sin 0) or z= r(cosé?-lr isin :9), or simply

z=rcis0 .

Example 1 Express ﬁ —i in polar form.

r=\/(x/§)2 +(-17 =410,

0 = tan™ Im 2 =tan™ -1 —-Z Note: Nots—ﬁ
Rez 3 6 6

because /3 —i is located in the fourth quadrant of the
complex plane.

SAB-i= MCis(— %] .

Example 2 Express 2cis(—27”] in x+iy form.

z}:—l—i\/g
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Example 3 Find modz and Argz, given z=—3cis(loT”J.

- 3cis(107”j is the rotation of 3cis(1077[j anticlockwise by

. (107[) . (107[ j
7, . .z==3cis| — |=3cis| —+nx
3 3
= 301’{47[ + f) = 3cis[£) .
3 3

Hence |z| =3 and Argz = % .

Example 4 Find modz and argz, given z = rcisé .
z=rcis@=r(cos @ + isin 0)

z = r(cos @ —isin 8) = r(cos(— @)+ isin(- 0)) = reis(- 6)
~.modz =r andargz = -6

Example 5 Findmodz™' and argz™", given z = rcis@ .
z=rcis@=r(cos@ +isin 0)

= _1 1 _ 1(cos @ —isin §)
z  r(cos@+isin@) r(cos@+isin@)cosd—isinb)
o cosfoisind _1(cos(- )+ isin(- 6)) = L cis(- 6)
ricos 0+sin’0) r r
~modz" =L and argz”' =-0
r

Multiplication and division in polar form
Let z = rl(cosH1 + isinﬁl) andz, = r2(00562 + isin02).

2,2, = 1 (cost91 +isiné, )(cost92 + isin@z)
=nr, [(cos 6, cos @, —sin 6, sin 6, )+ i(sin 6, cos 8, +cos b, sin 6, )]
Sz Z,=h [COS(Hl +6, ) + isin(l91 +6, )]

ie. zz, = rlrzczs(é?1 + 492)

This formula shows that to multiply two complex numbers
you multiply the moduli and add the arguments.

In a similar manner a formula for division can be obtained.
z, F .
2= Dcis(9,-6,), z,#0.
Z, n

To divide two complex numbers you divide the moduli and
subtract the arguments.

Example 1  Use the division formula to show that

! = —cis(— 6’) forz =rcis@ .

=—= lcis(() -0)= lcis(— 0)
rcis@ r r
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Example 2 Find the product of 1—-i and V3 +iin polar form.

1-i= x/zcis(—%j R \/g+i = 2cis(%j .

(-5 +1)- {ﬁ(gﬂ{z(gﬂ SYMEI
= Zx/zcis(— %)

1-i3
1+z\/§

1- i\/_ = ZCiS(— %) , 1+ l\/g = 201’{%) .

Example 3 Find the quotient in polar form.

2cis(— ﬁ]
1_iﬁ = 3 —1cis[—£—£j=cis[ 2”]
3 3

7]
3

Geometric representation and interpretation of x and + in
polar form

Consider z, =7, (cos 6, +isin 6’1) andz, =r, (cos 0, +isind, )

A Im
/Zl
s
e
>~ O0t6 PRty
~
V& ~
T
; ~ 91 [ Re
Y--- v
rry_---
2123
A Im
/Zl
s
s
Z~ 7
2 \\\ // 1
B e
~ o, > Re
1
I’(’ 91_62
7'1/}"2,’
z'l
Z
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De Moivre’s Theorem Example 1 Find the cube roots of i.
There are three cube roots of i.

If z=r(cos@ +isin@)=rcis@ and n is a positive integer, then Change i to polar form, i = lcis( k4 j .
2" =r"(cosn@ +isinn@)=r"cis(nd). 2

To find the nth power of a complex number you take the nth \/— i ( + 2k7zj i [’2’ + ZkﬁJ here k = 0.2
lcis =lcis| — |, W =

power of the modulus and multiply the argument by ».

Example 1 Use the multiplication formula for complex 0 3 _ad T AP AN ﬁ 1.
numbers repeatedly to show the working of De Moivre’s k=0, i =lis 6) | cos 6 rism 2 - 2!
Theorem. 5 B
Let z = rcis®, k=1, ¥i =1lcis (—”j ( ( j+lsm( ”Dz——+—i
2% = zz = rreis(0 + 0) = rcis(20), 6 6 2 2
=7z = rzrcis(29+ 9)= r3cis(3l9), k=2, 3x/l_ = lcis(g ] (cos( ]+ isin(g—ﬂD =—i.
6
. Example 2 Find the sixth roots of —1.
2" = 2"z = " reis|(n - 1)0 + 0)=r"cis(n0) Let —1=lcis(z).
. - x/_ (” 2 ”j = lcis(Lg'kﬂj , Where
Example 2 Find (ﬁ —i2 ) .
k=0,1234;5.

_Al0 . T _Anlo . T
=2 czs(—Zﬂ'—Ej—Z czs(—zj k=1, %- 1—101[

ool 5)n(3) i)

~2" )= 1024 £=3, §-1 1o (7_”)
)

nth roots of a complex number
k=4,%-1=lcis
De Moivre’s Theorem can also be used to find the nth roots of

a complex number. 1 |
1 k=5, =1 =lcis (—) —_— 1.
The usual notation of the nth root, K/; or x", forreal 6 2

numbers is adopted for complex numbers.
1

(ﬁ—iﬁ)w =[2cis(—%ﬂm - 21°cis(—107”] k=0, "1 = leis ( ] £+li
R
%

Example 3 Solve z*'+4=0.

Let w:z;,z and w in polar form are
P 2 +4=0,z'=-4, z=4-4
z=r(cos@+isin@) and w=s(cosg+ising) . Change 4 to polar form, —4 = 4cis(7).
w' =z z=%-4= ‘{/Zcis(ﬁ +42k”) , where £ =0,1,23.
s"(cosng +isinng) = r(cos@+isin )
1 kzO,zzﬁcis(zjzl—H’,kzl,zzﬁcis(zj:—l+i,
Hence s" =7 and ..s=r", 4 4
0+ 2k R4
ng=0+k(2z) and . ¢ = . kzz,zzﬁcisT S
1 1
Thus ¥z =z" :r”{cos(9+2k”j+isin(9+2kﬁﬂ k=3,z= ﬁcis(lr] =1-i.
n n 4
L0+ 2k L
=r"cis , where k =0,1,2,3,...... . Each of the nth roots of z has the same modulus, »” . Thus all
n 1

The nth roots of any complex number can be found by using the nth roots of z lie on the circle of radius 7" and centre
different k values from zeroup tok =n—1. Using k=n will (0, 0) in the complex plane. Also, the arguments of successive
result in the same nth root as using k = 0 . There are exactly n

. 2
roots differ by—ﬂ, .. the nth roots of z are spaced out equally
nth roots for any complex number. n

on this circle.
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Example 4 Plot the eighth roots of 16 in the complex plane
and then write down the roots in polar form and in x +iy
form.

One obvious eighth root of 16 is
1

1 1
Y6 =16° =2*)s =22 =42
The eight eighth roots of 16 have the same modulus V2 and

thus lie on the circle of radius /2 and centre (0,0). They are
7

2
separated by ?ﬁ = T

Py

24 (1/2) 2 &

Polynomials with real coefficients and factors over the set
of complex number, C

Here we only consider polynomials P(z) with integer
coefficients only and up to degree 3, e.g.

() z*+2z-3
Q) z*+1

B) z'+z+1
4 -1

5) z*+3z7-z-3

6) z°+3z7+z+3

(7) 2z -4z +3z-1
To factorise these polynomials, use one or a combination of
the following methods: trial and error; difference of two

squares; completing the square; sum or difference of two
cubes; grouping; the factor theorem.

(1) z22+2z-3=(z+3)z-1)
Q) zZP+l=z>-i’ z(z—i)(z-i-i)

2
3) Pazel=tezei Lo )03
4 4 2) 4

=(z+%)2 —(gi]z :(z+%—gi){z+%+gi)
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@) 2-1=2-P=(-1)+z+1)

—(z—l{z+l—£z}(z+l+£i}
- 2 2 2 2

5) z'+3z° —2—32(23 +322)—(z+3)
:22(2-1—3)—1(2-1-3)2(z+3)(z2 —l)z(z+3)(z—l)(z+l)

©) 224322 +z+3=( +322)+(z+3)
=22(z+3)+l(z+3) :(z+3 z2 +1)=(z+3)(z—i)(z+i)

(7) Let P(z)=2z" -4z +3z-1,

P(1)=2(01) —4(1) +3(1)-1=0, .. (z—1) is a factor of P(z).
Hence P(z)=22° -4z +3z—1=(z—1)2z" + pz+1).

To find p, expand and compare coefficients,1 - p =3, p=-2.

«P(e)= (s - 1)z —2241)= 2(2_1)(22 ‘“%]

2
zz—z+l—l+l 22(2—1 z—l +l
4 4 2 2 4

Linear factors of quadratic and cubic polynomials

It can be shown by completing the square that the two linear
factors of a quadratic polynomial P(z) =az’ +bz+c are

Z+bi\/b2—4ac

2a

ie. P(z) = a(z

E)

2a

b—+b* —4ac
z+
2a

For quadratic polynomials with real coefficients, the two
linear factors are either both over R or both over C.

For cubic polynomials with real coefficients, either all three
linear factors are over R, or one is over R and the other two

over C.

Also, the two linear factors over C always form a pair,
ie.[z—(h+ik)[z—(h—ik)], where h,k eR.

The above does not apply to polynomials with complex
coefficients.

Complex numbers 6



Example 1 Factorise 3z>—z+3 over C.

3z —z+3

N 1+ 1()2)— 4(3)3)
2(3

—1+«/—35J{ —1—\/—35]
=3 z+ z+

6 6

s Z+—1+é«/35}{z+—1—6i\/35]

Example 2 Given that z+1-2i is a factor of
2* + pz* +qz -5, find the values of p and ¢, given p,q R .

Since the polynomial has real coefficients and z+1-2iis a
factor, .. z+1+2i is also a factor, and the third factor is real.

Hence z° + pz’ +qz—5=(z+1—2i)(z+1+2i)(z+r), reR
Expand, collect like terms and compare coefficients,

24 ptrqz-5=2"+(r+2) +2r+5)z+5r,
snr=-1,p=r+2=1,qg=2r+5=3.

Example 3 Show that z—1+i is a factor of

z®> +2z% =6z +8. Find the other linear factors of the cubic
polynomial.

Let P(Z)z 2 +2z° —6z+8.

Pl-i)=(1-if +2(-i) —6(1-i)+8
=1-3i-3+i-4i-6+6i+8=0, .. (z—1+i) is a factor.
The polynomial has real coefficients, .. (z —1—) is also a
factor.

Hence P(z): (z—l+i)(z—1—i)(z—r), where r e R .
Expand the pair of conjugates and compare,

z3 4277 —6Z+8=(Z2 —22+2Xz—r), r=-4.

The third factor is (z + 4).

Factorisation of polynomials of the form z* — a, 7' + a,
6
z —a

Example 1 Factorise 2z*—-32 over C.
224 —32=2(* ~16)=2(z* - 4)z* +4)
=2(z =2z +2)z—2i)z +2i)

Example 2 Factorise z*+4 over C.

Complete the square by adding and subtracting 4z°,
2t +4=z" +4z27 + 447

(22 + 2)2 - (22)2

(22 —2z+2)z° +22+2)
:(z—l—i)(z—1+i)(z+1—i)(z+l+i)
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Example 3 Factorise z°-64 over C.
2 —64=(-8)z +8)
(2—2)(22 +22+4Xz+2 z? —22+4)

:(2—2)(z+1—ix/§Xz+l+i\/§Xz+2 Z—l—l\/ng—l+i\/§)

Polynomial equations with real coefficients

Let P,(z)=0 be a n-degree polynomial equation.

Quadratic equations P,(z)=0 can be solved with the

—b++b* —4ac

2a

quadratic formula,

zZ =

Higher degree polynomial equations can be solved by
changing the polynomials to factorised form over C.

For polynomial equations with real coefficients, the non-real
roots always occur in conjugate pairs. This is known as the
conjugate root theorem. Note: The conjugate root theorem is
applicable to polynomial equations with real coefficients only.

The fundamental theorem of algebra states that if #n >0
and the coefficients are either real or complex numbers, there
is at least one complex number ¢; such that Pn(al) =0. o

is called a root of P,(z). According to the factor theorem,
z—a, isafactor of P,(z) and hence

P(z)=(z-2 )0, (2).

Apply the fundamental theorem of algebra and the factor
theorem to O, _, (z), then

Pn(Z): (Z_al XZ_aQ)thZ(Z)‘

Repeated application of the two theorems enables one to show
that P,(z) has n linear factors over C,

Pn(z):a(z—al)(z—az) ........ (z—an),

<. P,(z)=0 has n solutions. They are the roots of P,(z) . Itis

possible that some of the solutions (roots) may be repeated
(i.e. the same).

Example 1 Solve z’ —z>+z—-1=0 over C.
22—z +z-1=0, (23—zz)+(z—l)=0,
2(z=1)+1(z-1)=0, (z—1)fz* +1)=0,
(z—l)(z—i)(z+i)=0, Soz=10,—0.

z* =z +z—-1=0 is cubic, .. it has 3 solutions. Since its
coefficients are real, .. its two complex solutions are
conjugates.

Complex numbers 7



Example 2 Use the fundamental theorem of algebra to solve
z’ —(2—1’)22 +z-2+i=0.
Let P(z):z3 —(2—1’)22 +z-2+1.
P(i)=i*—(Q2-i)* +i-2+i=—i+2-i+i-2+i=0, i is
arootof P(z)=z" —(2-i)z* +z-2+i.

P(z):z3 —(2—i)z2 +z—2+i=(z—i)(z2 +pz+q)
=z’ +(p—i)z2 +(q—ip)z—iq.
Compare coefficients, p—i=-2+i and —ig =-2+1.
Sp=-2+2iand g=—-1-2i.
Hence
P(Z): (z —i)(22 + pz + q)z (Z —i)(zz + (— 2+ 21')2 + (—1— 21'))
Use the quadratic formula to find the other two roots:
—(~242i) (-2 +2if —4(1)-1-2) 2-2i+2

2(1) 2

=2—i or —i.
The three roots are i,—i,2 —i .

Alternative method: Factorisation by grouping.
z* —(2—[)22 +z-2+i=0

(2 —(2-i)2)+(z-2+1)=0

zz(z—2+i)+1(z—2+i)20

(zz-i-le 2+i)= (—l)(z+l)(z—2+l)=0
=i,—i,2—

Example 3 Show that —+ —z is a root of the equation

J_ V2

z?> —i =0. Find the other root(s).
Let P(z)=2 -1,

p(L+L,-j_(L+L,-j2_,-_(1+i_1j_,-_o
NERRE B R AT
+—1 is a root of z*

T

a factor of z* —i.

—i=0and z-

According to the fundamental theorem of algebra, z> —i =0

is second degree, .. it has exactly two roots. Let a +bi be the
other root.

_i{z_%%iﬂ[z—wmﬂ

1 1
=z - (—+—zj+(a +bz)} (—+—iJ(a+bi)
{ NER NER
Compare the coefficient of z on both sides,
—i|+(a+bi)=0
(&
1

. 1 .
The second rootis —— ——1i .

V2 2

1

5

.'.a:—L and b=—

V2
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Alternative methods in finding the roots of z> —i =0:
(a) Using polar form.

22 —i=0, . .z" =i, z=\/;= lcis(%+2kﬂj ,

; [ 1
k=0, z—ﬁ—ﬁczs(zj—ﬁ+ﬁl.
k=1 z=x/;=ﬁcis[5—”j=—i—Li.

’ )RR

(b) Let z=a+bi betherootof z> —i=0.
sa+bif -i=0.

Expand, collect real and imaginary parts to obtain
(az —b2)+ (2ab-1)i =

sa’—b>=0and 2ab-1=0

Solve simultaneously to obtain
1 | 1 1

— and b=—=,0ora=—— and b=——.
V2 V2 V2 V2

Note: The last example shows that for quadratic equation of

a =

the form z> —¢ =0, c € C, if « is a root, then the other root

is —a.

Representation of relations and regions in the complex
plane

A ray in the complex plane: It is a set of complex numbers

having the same argument,

e.g. {z cArgz = %} Am

v

Re

Note: 0+ 0i = Ocis(%] , .0+ 0ie {z  Argz = %} .
This ray can be translated horizontally and/or vertically,

e.g. {z : Arg(z - (2 - z)) = %} , in this case the starting point of

the ray is 2 —i instead of 0+0i .

T

s

Re

Complex numbers 8



Region defined by a ray Region defined by a line

. T
Example 1~ Sketch the region defined by {Z 1 Argz < g} - Example 1 Sketch the region defined by {z z=12]z+ 2i|}.

Im
I
A IH
-7 \
~
~
< _____ ;’ A} >
Re 1 \\ Re
Test: L, > Ly
/ - \/E: 2x+4y=-3
Example 2 Sketch the region defined by -2 Ly
{z:OSArg(z—(2—i))S%} |
Example 2 Sketch {z —1<Imz < 2} .
Im 4
2 7 , Re Irri‘
R €t
—1 K

z Re

6 »
A line in the complex plane: One way to define a straight line < >
in the complex plane is to consider it as a set of complex

numbers such that each number is ‘equidistant’ from two fixed

numbers, e.g. {Z Je=1]=|z+ 2i|} Example 3 Sketch {z:2Rez-Imz>1}.

Easier to find the cartesian inequation first before sketching.

|z—l| is the ‘distance’ of z from 1+ 0i,and |z+2i| is the 2x—y>1, . y<2x-1.
‘distance’ of z from 0-—2i. AIm
Im /7‘
A
/
0 ,I » Re
/
7 /
_1/ é—\
/
75 y<2x-1
Let z=x+iy. |z _1| = |z + 2i| becomes A circle in the complex plane: 1t can be defined as a set of

complex numbers that are at the same ‘distance’ from a

|x tiy- 1| - |x tiy+ 2i| particular complex number (the centre),

|(x—1)+iy| =|x+i(y+2) e.g. {z : |z—(l+i) = 1}, radius = 1, centre is (1, 1).
(x—l)2 +y’ =x7 +(y+2)2
2x+dy=-3 Tm o

The last equation is known as the cartesian equation of the line /

defined by {z : |z - 1| = |z + 2i|} .

1
Since x = Rez and y = Imz one can also define the line as K _

{z:2Rez+4Imz=-3}. 0 T > Re
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Example 1  Show that {z : 2|z + l| = |z —i|} also defines a
circle in the complex plane.

Let z=x+1iy, 2|(x+1)+iy|:|x+(y—l)i|,

4|()c+l)—i—iy|2 =|x+(y—l)i|2, 4((x+l)2 —i—yz)zx2 +(y—l)2,
4)c2+8)c+4—i-4y2 =)c2+y2 -2y+1,
3x7 +8x+3y* +2y=-3,

8 2

X +—x+y +=y=-1,
3 4 3y

, 8 (4 , 2 1 4\ (1Y

Xt+=—x+|=| +y +=y+|=| =-14+|=| +| =

3 3 3 3 3 3
2 2

x+i + y+l :§.Itisacircleofradius \/Ezﬁ

3 3 9 9 3

4 1
centred at | — —,—— |.
373

Example 2 Sketch the region {z : 2|z + 1| < |z —i|}.

Let z=x+1iy, 2|(x+1)+iy|<|x+(y—1)i|,

4|(x+1)—i—iy|2 <|x+(y—1)i|2, 4((x+1)2 +y2)< x? +(y—1)2,
4x* +8x+4+4y” <x*+y° =2y +1,

3x° +8x+3y* +2y < -3,

8 2

W Hox+y +=y<—l,
37T TRY

, 8 4y ., 2 1y’ 4 (1Y

XH—x+|=| +y -y +| | <-l4+|=| +| =
3 3 3 3 3 3
4\’ 1y 8

X+—| | y+=| <—.
3 3) 9

Im

Re

v
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Example 3  Sketch the region {z :2< |z - 2i| < 3}.

Centre (0, 2)

Radius =2

An ellipse in the complex plane: It can be defined as a set of
complex numbers such that the sum of ‘distances’ from two
given complex numbers is constant and greater than the
‘distance’ between the two given complex numbers,

e.g. {z : |z + i| + |z —i| = 4}. In this case, the two given complex

numbers are —i and i.

X >
-3 0 ,//'/ V3 T Re
-1 L,
-2 La+Lb:4

Example 1 Sketch the region {z : |z| + |z - 2| > 4}.

Let L, be the ‘distance’ of z from 0, and L, the ‘distance’ of z
from2.L,+L, >4

|z| + |z —2| =4 1is the ellipse and |z| + |z - 2| > 4 is the region

outside the ellipse.

[e]
/\\‘_
-
:
.
.
.
)
.
.
.
.
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Other simple curves:

Example 1 Sketch the Argand diagram of
{z:Reszmzzl}.

Easier to find the cartesian equation first before sketching.

Let z=x+iy, RezxImz=1, xy =1, y:l
Am
0 »Re

N

Example 2  Sketch the Argand diagram of
{z : |Im(z + 2i)| = |z - 2i|}.

Find the cartesian equation first before sketching.
Let z=x+iy, [Im(z+2i)|=|z-2i,

Ly +2 =+ (v -2)],
=|x+ y—2)z| ,l.e. y+2) =X +(y—2) .

|Imx+(y+2 ) |x+ y— 2 |
2’

2

Expand and simplify, y = éx

~ 7

© Copyright itute.com 2006 Free download & print from www.itute.com Do not reproduce by other means

Example 3  Sketch the Argand diagrams of
{2 :[tm(z +2i)| = 2z 24}

Let z=x+iy, |Im(z+2i)|—2|z 21,
|y+2|—2|x+y 2)|

|y+2| :4|x+ y—2)l| ,Le. (y+2) :4(x +(y—2) )
Expand, simplify and complete the square,

-]
+ 3 =1

|Im (x+(y+2) ]

2 2
4x2+3[y—&] =ﬁ,or al . ~—=1.
RERC I
3 3

It is an ellipse centred at (0,?] ,i.e. z= ?i .

I

Example 4 Sketch the Argand diagrams of
{2 :2fim(z +20)| = |z 21}

Let z=x+1iy, 2|Im(z + 2i)| = |z 2i|

2/tm(x + (v +2)i) = Sy 2=+ (v -2),
4|y+2|2 :|x+ y—2)1| , 1.e. 4(y+2) =x +(y—2) .
Expand, simplify and complete the square,

)
, ( 10]2 64 X T3
x* =3 y+—| =——,o0r = T =
3 3 83 8
3 3

It is a hyperbola centred at [0,—%) ,l.e z= —?i .

» I

e S

Complex numbers
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Example 5 Sketch the Argand diagram of Example 7 Sketch in the complex plane the region defined
{:fz+5/- |- 5| =8}. by {z:|z|£2}ﬁ{z:Argz<%}.

Let z=x+iy, |z+5|-|]z=5/=8, [z+ 3] =|z—-5+8, Im

(c+5)+i| = q(x—5)+iy| +8),

G+ 5)+ i = |(c—5)+i|" +16[(x —5)+iv| + 64,
(x+5) +y7 =(x=5 + > +16|(x=5)+iy|+ 64.
Expand and simplify, 5x —16 = 4|(x - 5)+ iy| .
(5x-16)" = (4[(x—5)+ ]S

25x% ~160x +256 = 16{(x = 5)* + ),

25x* —160x + 256 = 16x* —160x + 400 + 167,

2 2

. 9x? —16y° =144 or :_z_y_:

32

It is a hyperbola centred at the origin. {z : |z + 5| - |z - 5| = 8} is
the right hand branch only! Why?

Aln

Example 6 Plot {z : |z| = argz} in the complex plane.

Set up a table of values for » = |z| and @ = argz in radians.

r |0 1 2 13 4 15 6 | 7 8 9
610 1 2 3 4 |5 6 | 7 8 9

Polar coordinates.

™

-10

{z : |z| = argz} is a spiral.
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